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Level statistics and eigenfunctions of pseudointegrable systems:
Dependence on energy and genus number
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We study the level statistiagsecond half momernity and rigidity A3) and the eigenfunctions of pseudoin-
tegrable systems with rough boundaries of different genus nunghéfée find that the levels form energy
intervals with a characteristic behavior of the level statistics and the eigenfunctions in each interval. At low
enough energies, the boundary roughness is not resolved and accordingly the eigenfunctions are quite regular
functions and the level statistics shows Poisson-like behavior. At higher energies, the level statistics of most
systems moves from Poisson-like toward Wigner-like behavior with increasi@n investigating the wave
functions, we find many chaotic functions that can be described as a random superposition of regular wave
functions. The amplitude distributioR(¢) of these chaotic functions was found to be Gaussian with the
typical value of the localization volum¥,.~0.33. For systems with periodic boundaries we find several
additional energy regimes, whelrgis relatively close to the Poisson limit. In these regimes, the eigenfunctions
are either regular or localized functions, wh&g)) is close to the distribution of a sine or cosine function in
the first case and strongly peaked in the second case. An interesting intermediate case between chaotic and
localized eigenfunctions also appears.
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[. INTRODUCTION There are, however, several classes of intermediate sys-
tems between the two limiting cases, such as, e.g., polygonal
Quantum billiards are quite simple models for many pracseudointegrable systerfiz—4], on which we focus in this
tical applications in solid state and nuclear physics, such agaper, or systems with a pointlike scattefgt. As in inte-
e.g., quantum dots, microdisk lasers, and electron transpog@fable systems, the motion of a classical particle in a pseudo-
in microstructures. An important means for the study of@ntegrable system is restricted to a two-dimensional surface
quantum billiards is the statistics of the quantum mechanicdl Phase space. However, these surfaces do not have the
energy levels of a given system, where the distance distribin@pes of tori but are more complicated objects with more
tion p(s) of the normalized distances, = (E,,,— E,)/(s) than one hole. Thgy are called “multihandled sphereg. Ex-
between two consecutive energy levéls, ; and E,, with amples of pseudomtegra_ble system\s are polygons with only
the mean distances) has the following two limiting ranonarll angles:ji W/m.it; \(/jwtbh nh’mi € and at tl)east one
cases: (i) the Poisson distribution, pp(s)=exd—s|, 1. They are described by their genus number
which is the distance distribution of uncorrelated
numbers E,, and (ii) the Wigner distribution py(s)
=ms/(2(s)?)exd — ms(4(s))]. An example of caséi) is
the energy levels of a single symmetry group of an electron
in a two-dimensional2D) potential well in the shape of a which is equal to the number of holes in the multihandled
square, rectangle, or circlentegrable systemsAs a second  sphere in phase space. Helés the number of angles ard
example, localized states in disordered systems tend to the the least common multiple ofy. The reason that those
Poisson distribution with increasing system size, a propertgystems are not completely integrable is their property of
often used in solid state physics to distinguish between lobeam splitting. At some points in their geometry, neighboring
calized and extended states in disordered sysfdmsAn trajectories of particles can be split into two opposite direc-
example of caséi) is the energy levels of chaotic billiards, tions (see Fig. 1
such as, e.g., the stadium or the Sinai billiard. Several author§6-—11] found distance distributions of
In close analogy is the behavior of a classical particle in gpseudointegrable systems intermediate between the Poisson
billiard, which undergoes elastic reflections at the walls. Itand Wigner distributions. Referenf@] presented a numeri-
also has two limiting cases, depending on the billiard geomeal investigation of pseudointegrable billiards of small genus
etry. If the billiard is chaotic, the motion of the particle is numbers, where the boundary was approached by a step
ergodically extended over the whole energy surface in phaskinction, which was arranged along the curved shape of the
space. Two particles whose trajectories are very close at thghaotig Sinai billiard. With decreasing size and increasing
beginning diverge exponentially from each other. If the sysnumber of steps, the level statistics of this system ap-
tem is integrable, on the other hand, the motion of the parproached the Wigner statistics. However, as pointed out in
ticle is restricted to a two-dimensional torus in phase spac#his work, the analysis was performed at very small energies,
and neighboring trajectories diverge only linearly from eachwhere the wavelengths were larger than the step sizes. So it
other. was assumed that the Wigner-like level statistics was not an
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a b, even at energy values where the boundary roughness is re-
-~ -~ solved.

The paper is organized as follows. In Sec. Il, we introduce
3 A the special pseudointegrable geometries that we consider. In
v Sec. lll, we show the results for the level statistics of the

/ eigenvalues for several systems of different valueg.dh

Sec. IV, we investigate the eigenfunctio#$® in these en-
ergy intervals and introduce several quantitative measures,
i.e., the localization volum#(®), the amplitude distribution
P(4(®), and the behavior of the eigenfunctions fnm

b space. The functiong and W differ in their normalization,

Y =AW, with the areaA of the system. Finally, in Sec. V,
we apply these measures to many eigenfunctions in the dif-
ferent energy intervals. We find that in intervals where the
energy levels have Poisson-like behavior the eigenfunctions

FIG. 1. Sketch of the considered pseudointegrable geometry”.‘re.e'.ther Ilocallze(\ijr regi}il(lar.t) Ehnergy Inter\r/]als Whlth rllevzl
The parametea is the width of the “teeth,’h is their heightp, and statistics close to Wigner-like behavior, on the other hand,

by are the distances between them in xrendy directions, andN, contain elgenfum_:tions that are random superpositions of

andN, are the numbers of teeth in thendy directions. The genus plane waves. An interesting mixed case also appears, where
numberg of this geometry ig=1+ G, , whereG, is the number of ~ the superposition of plane waves leads to weak localization.

salient corners with angles ofr32. The beam splitting property of

these corners is shown by the two arrows, which indicate two dif- II. SYSTEMS AND CALCULATIONS

ferent trajectories of classical particles.

We consider a membrane of the sound velocithat lies
inherent feature of the pseudointegrable shapes, but caniie the xy plane and vibrates in the direction. When the
from the underlying assymptotic shape of the Sinai billiard.restoring forces are considered as scalar, the vibrations of
Pseudointegrable systems of small genus numper® and  this membrane are described by the Helmholtz equation
3 were investigated numerically7,8] and experimentally
[8], showing an intermediate level statistics that clearly de- w2
viated from the Wigner distribution. If®], numerical simu- AVI(x,y)= - — ¥ I(x,y), 2
lations on systems with increasing genus numbers ug to ¢
~1000 indicated that, for not too small energies, the distance ) . ]
distribution changes systematically from Poisson-like towardVith the ath eigenfunctiont?)(x,y) and the corresponding
Wigner-like behavior with increasing For pointlike scatter- €igenvaluew? . The boundary conditions can be of Dirichlet
ers also, it was shown by general arguments and numeric& Neumann type, referring to a membrane that is kept fixed
calculations that the level statistics is intermediate and closat the boundary or that can vibrate freely, respectively. Equa-
to Wigner-like behavior for small level distancEg12—14.  tion (2) has the same form as the stationary Sdimger
The Wigner-like behavior increases with the number and th€quation with zero potential=0 inside the system. There-
coupling strength of the pointlike scatterers in the systenfore, under Dirichlet boundary conditions, which refer to an
[12,14. infinite potential on the boundary, it also describes an elec-

The level statistics seems to be connected to the propetron of massu in an infinite potential well. In this case, one
ties of the eigenfunctions. For example, in a billiard with has to replacen?/c? by 2uE, /%2, with the energy eigen-
=2 it was found that there are regular and irregular eigenvalueE, .
functions coexisting10]. In the Husimi representation, the  For the numerical calculations, E) is discretized on a
eigenfunctions of systems with smajlshow signatures of square lattice, which reduces the problem to the diagonaliza-
pseudointegrability, whereas those of systems with layge tion of a symmetric matrix, which is carried out here by the
tend to be irregulaf11]. Lanczos algorithn{18], a numerical procedure to compute

In this paper, we want to investigate the energy depeneigenvalues and eigenvectors of spalbg N matrices by
dence of the level statistics of a special class of pseudointeeducing them iteratively to a tridiagonal form, for which
grable systems with high genus numbers. At low energies, igffective algorithms exist. The eigenvalugg are calculated
is known that one can observe a level statistics that deviatesumerically under Dirichlet and Neumann boundary condi-
from the high-energy limit, as shown in R¢6] for pseudo- tions and their spectra are analyzed by means of level statis-
integrable and in Refg7,15—17 for chaotic billiards. Here tics. The E, are dimensionless quantities, as we set
we find that for our systems there can be many energy wink?/(2,)=1 andd=1, whered is the lattice constant of the
dows where the level statistics is comparatively close tdiscrete lattice.

Poisson statistics, and other energy intervals where the be- As a model for our studies we chose rational billiards of

havior is close to Wigner statistics. We show that this behavthe shape presented in Fig. 1 with different parameters refer-
ior is correlated with the properties of the eigenfunctions anding to different numbers, widths, distances, and heights of
that there exist several characteristic types of such intervalshe “teeth.” The genus numbers of these geometries can eas-
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ily be increased by increasing the number of teeth. Two dif- TABLE I. Table of the geometries used in Fig. 2. The param-
ferent angles occuty= /2 ande=3x/2. Applying Eq.(1),  etersa, h, b,, andb, refer to the ones given in Fig. 1. The values
we find thatg=1+ G;, whereG; is the number of angles of of the parameters are given in units of the lattice congant

valuesp=3m/2. The systems have no symmetry axes and it

is therefore not necessary to separate the calculated eigenva/®eometry —a  h b, by N Ny g
ues a_ccordir_lg_ to their symmetry groupshich would be A 8 8 1 0 3
technically difficuld. The considered parameters range from , 8 8 368 150 1 2 5
systems with only a few teeth and therefore very small genus As 8 8 117 150 3 5 9
numbers up to systems gi=101. A, 8 8 55 71 6 4 19
Ag 8 8 39 37 8 7 29
Ill. LEVEL STATISTICS Ag 8 8 26 27 11 9 39
A 8 8 21 18 13 12 49

We now analyze the eigenvalues by means of the level
statistics. The energy levels, are normalized“unfolded”)
to new valueg ,, such that their mean distan¢s) is equal ,
to 1. Then we calculate the following two quantities. “In Figs. 2a) and 2c) we plotted the values ofq for

(i) From the nearest neighbor spacing distribuigs), it Dirichlet a_md Neumann boundary conditions versus the en-
has become common to calculate the second half moment§'9Y- In Figs. 20) and 2d) we show theds(L) data for the

fixed energy interval€ (= w?/c?) €[1.5,2.9 versusL. The
1 1 (e energy interval is chosen such that the wavelength
|o:§<52>: EJ s?p(s)ds, 3 =2mclw is smaller than the widths of the teeth and there-
0 fore the boundary roughness is resolved. The behavibg of
shows many fluctuations but its average value decreases sys-
which lie between the two limiting valua§"®'~0.637 and  tematically with growingg toward the Wigner limit, which is
1505591 (see Refs[19,20)). This enables us to decide if shown as a solid line. Comparing FiggaRand Zc), we also
the statistics is closer to Wigner or closer to Poisson by comsee that the behavior for both boundary conditions is quite
paring just one numbdr, and is more comfortable in han- similar. The only exception occurs at very small energies,
dling thanp(s) itself. wherel, lies considerably higher in the Dirichlet case. The

(i) Another measure, which turns out to be even morgeason for this is that the conditio=0 exactly at the
sensitive tog, is the spectral rigidityA3(L), wherelL is the ~ boundary prevents the long-wavelength eigenfunctions from
length of the energy interval considerfil]. A;(L) starts Penetrating into the small boundary teeth. The same “screen-
from the integrated density of statedl(e)=N(e,)

=Eﬁ:1®(aa—sn) of the unfolded energy levels,, which 1.0
is a staircase and can be approached by a straight line ol (b) A
slope 1.A3(L) is defined as the least squares deviation Iy 3
Gy p 4
e+L/2 08 ¢ XXN""XKXXX
Ag(l_): Minrl’er' [N(S)_rl_r28]2d8 y (4) 000 2
e—L/2 ) xxxxxxxxx
. 0.6 ' ‘ | ’ ' -1 0
where Min. r, mea_ns that th.e paramete_rlsandrz are cho- ; (©) (d) .‘a A
sen such that the line +r,e is the best fit oN(e). For the 0 e Fxd
calculation of A5(L) we use the technique derived in Ref. 0s |7 cfc%‘” 4
[22]. The limiting values areA;(L)=L/15 for integrable ey L et
systems and (L) =In(L)/7*—0.07/r>+ O(L 1) for the en- o 2
semble of Gaussian orthogonal matri¢28], which serves » : 53
as a genera]ly accgpted good Iimit for chaqtic systems. This 06 0 1 o 50 1000
means that in the first cage;(L) increases linearly witlh, E L

and in the second case logarithmically. As discussed above,
we expect intermediate behavior for pseudointegrable bil- FIG. 2 (6.1) and_(c) The second half moments, are plotted
liards. versus the dimensionless enefyor several systemsb) and (d)

. . . . A3(L) from the fixed energy interveE e[1.5,2.0 is plotted vsL
In this paper, we will basically usk, as the easier of the for the same systems as (@ and(c). (a) and(b) refer to Dirichlet

FWO measures. However, we first want to, compare the beha\ﬁnd(c) and(d) to Neumann boundary conditions. The symbols refer
ior of I andA for several systems, ranging from very small 1, the systems of Table | with increasing genus nungpes (full
values ofg=3 until g=49 at higher energies. The param- cicles, g=5 (open circley g=9 (full squares, g=19 (X), g
eters of these systems are shown in Table |. All systems have 29 (open squaresg=39 (+), andg=49 (full diamonds. In (a)
roughly the same area and exactly the same widths anghd(c) the systems ofj=19 and 39 are omitted for a better vis-
heights of the teetha=h=28d, whered is the lattice con- ibility. 15, A5, andL are dimensionless. In all figures, the Poisson
stant. limit is indicated by a dotted and the Wigner limit by a solid line.
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TABLE II. Series of the geometries used in Fig. 3. The param- 1 Frororor T == gy o g g
etersa, by, by, andh have random values from the indicated in- I ( )
tervals. The values of the parameters are given in units of the lattice a
constantd. 0.8 - ]

Geometry a by, by, h Ny Ny g

R, [4,15] 22 17 77 0.6
R, [4,10] 29 22 101 I

ing” of the boundary roughness at small energies has already 0.8
been observed for fractal druri24]. For A5 of pseudointe- I
grable systems it was shown [ig5] by a semiclassical peri-
odic orbit theory that it depends on several details, e.g., on 0.6
the energy interval and on the area of the system. However, I,
by keeping the billiard area, the energy interval, and the i
height and width of the teeth fixed, we find also g a 0.8
smooth and systematic behavior that dependsg.on

The behavior ofA5(L) [see Figs. &) and 4c)] corre- [
sponds to that of,. Those systems with small genus num- 0.6
bers g show high values of; and accordingly values of
A3(L) which are close td_/15 (dotted ling. Systems with
high genus numberg, on the other hand, show, values FIG. 3. The second half momeh is plotted versus the dimen-
close tolg"9"" and accordinglyA; curves which are also sionless energf for Neumann boundary conditions and for differ-
closer to the Wigner limit(solid line). As in the case of ent geometriegcf. Fig. 1). The systems ofa) have random param-
pointlike scatterers they come very close to the Wigner disetersa, by, by, andh with different widths of the distributiontsee
tribution for smallL. A5(L) turns out to be a more sensitive Table I). The solid line corresponds to the geomeRy the dotted
measure thar, in the case of largg values. While the liné to geometnyR,. (b) shows the systemB,, B, andB; (see
values ofl, for systems with genus numbegs>20 lie al-  Table I, which have constant values af=b,=b,=4 and an
ready so close to the Wigner limit that a succession betweeljcreasing heighth=4 (solid line, h=8 (dotted ling, h=16
them can hardly be recognized, we still observe clear differ!dashed ling (c) shows the systenB,, Bs, andBs (see Table i)
ences between the individual curves f in the case of Wi parametera=b,=b,=8 and the heighh=4 (solid ling), h
larger level distances. However, thg, data also indicate a =8 (dotted ling, h=16 (dashed ling
systematic change from Poisson-like toward Wigner-like be-
havior with increasing. Wigner limit are seen beyond the first 2000 states.

In the following, we concentrate oky. We calculatel In Figs. 3b) and 3c), |, is plotted versug for two types
for several selected systems with different heights, widthsof system with periodic boundary roughness, whose param-
and numbers of teeth in the energy rang&ef[ 0,3], which  eters are presented in Table Ill. In the first grd&ig. 3(b)],
corresponds to roughly 40000 energy levels. The calculaall systems have the same widths b,=b,=4d and num-
tions were made in intervals of energye=0.05, each of persN, andN, of teeth(and correspondingly the same genus
them containing about 600-800 levels. Here, we appliehymberg=87). The heights of the teeth are differeht,
Neumann boundary conditions in all cases. The behavior of 44 for systemB, (solid lineg, 8d for systemB, (dotted
IIO under Dirichlet boundary conditions is qualitatively simi- lines), and 1@ for systemB (dashed lines We first see that
ar.

First, we discuss the case of random values of the param- _ _ o
etersa, b, by, andh (Table 1I). For the first systenR, the TABLE IlIl. Series of the geometrles_ use_d |n_ Fig. 3. The pargm-
values were uniformly distributed betweed &nd 15i; for ~ Strsa h, by, andb, refer to the ones given in Fig. 1. In both series
the second system, between 4 and 1@l. The areas of the of the geome_trles, the_ W|d_th and dl_stance between the teeth remain

. . . the same while the height is changing. The values of the parameters

systems are again kept roughly constant. In Fig),3, is are given in units of the lattice constast
plotted versus the enerdy for the systemdR; andR,. For
most energy values, we find a roughly constant valué,of

. : Geometry a=h,=h, h Ny Ny g

that lies close to the Wigner value. Only for very low energy

valuesk €[0,0.2] (which corresponds to roughly 2100 lev- B; 4 4 48 40 87
els) doesl, show deviations from the high-energy behavior B, 4 8 48 40 87
toward higher values. This is due to the finite resolution of B 4 16 48 40 87
the boundary roughness in the limit of long wavelengths, B, 8 4 24 20 43
where the systems look more regular. So, for a random struc- B, 8 8 24 20 43
ture of the boundary roughness, the high-energy limit is Bsg 8 16 24 20 43

reached quickly and no deviations of thgvalues from the
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the narrow teeth account for a large low-energy regime within this energy regime, closer to the Wigner value. The func-
Poisson-like behavior. Additionally, we observe sharp peaksion ¥{'") in Fig. 4(d) [regime Il in Fig. 4f)] again looks

of the Iy values at several energies, which become moreegular andl,=0.893 is again close to the Poisson value.
pronounced with increasing and are most probably due to The difference of this function from the functioh!'? is the

the periodic structures of the geometry. We will discuss thesemaller wavelength in regime Ill. Here, the boundary rough-
peaks in the following sections. The second grgcp Fig.  ness is to some extent resolved and the reason for the regular
3(c)] consists of billiards with larger widtha=b,=b,=8.  wave function lies in the periodicity of the teeth. These regu-
This group of billiards shows fewer and only small peaks inlar wave functions at higher energies should disappear in
the 1, values and the high-energy regime is reached quitsystems with random boundary roughness. Figus ke-
quickly. gime 1V in Fig. 4f)] represents an interesting intermediate

Therefore we found two types of system where the high<ase of a function that is chaotic as well as localiZgdin
energy limit is reached quickly: geometries with broad teeththis case is 0.667, rather close to the Wigner value. The
and geometries with a random distribution of teeth widths. Infunction (') looks random in the inner rectangular part of
systems with very narrow and regular teeth, on the othethe billiard, but its amplitudes in this part are very small. The
hand, energy windows appear where the behavior of the sysargest amplitudes of the function are localized on the bor-
tem deviates significantly from the described behavior in thelers of the teeth. So this case is in some sense intermediate
high-energy regime. In these intervals, the valuesore  between a localized and a chaotic function. This seems to be
considerably larger than the expected high-energy values weak localization mechanism, where the wave is reflected
These energy windows are most interesting and we look &t the boundary roughness and interferes constructively in-
them in more detail now. side the teeth.

There are three different effects that may lead to higher Accordingly, we found four characteristic types of eigen-
values ofl. First, at smaller energidgarger wavelengths  function, regular ones, localized ones, chaotic ones, and in-
the teeth could not be sufficiently resolved and the states atermediate ones between chaotic and localized. All eigen-
affected by only the rectangular main body of the systemfunctions seem to correspond to energy windows, which can
This is the case for small energies, when half a wavelength ibe characterized by their correspondingvalues. We now
larger than the widtla and the eigenfunctions are not small introduce several measures for the eigenfunctions that allow
enough to penetrate the teeth. Second, also at higher energyg to distinguish between those cases.
values, the periodic structure of the teeth could allow for (i) As a first characteristic for the eigenfunction analysis
very regular functions, even if the boundary roughness isve used the distribution of the amplitudB¢¢). By semi-
fully resolved. In this case also, we expect a distributionclassical arguments it was conjectured that for classically
close to a Poisson distribution. Third, localized states camhaotic systems most eigenfunctions are a random superpo-
also be a reason for the spectrum to behave in a Poisson-lilgition of plane waves, which leads to an amplitude distribu-
way. Therefore, we expect thif is closely related to special tion that is a Gaussian functig26—2§,
system properties and should be reflected in the shape of the
eigenfunctions. In order to understand this, we now investi-

2
he eigenfunctions in the different energy windows. P(¢)=——=e "7, 5
gate the eigenfun gy W Nz
IV. EIGENFUNCTIONS where ¢=\JA¥ is normalized according to

. : . T|(x,y)|?dxdy=A with A the area of the billiard. This nor-
Some typical eigenfunctions of the systérpunder Neu- malization allows us to compare eigenfunctions of systems

mann boundary conditions are presented in Fig. 4. They are.. . . . POV X i
taken from the different energy regiméabeled from I to with different sizes. The amplitude distribution of eigenfunc

IV), as indicated in Fig.d). Due to technical restrictions of tions of a rectangular billiard, on the other hand, was shown

the Lanczos algorithm, we could not calculate eigem‘unctioné0 be[12]

of arbitrarily high energies in large system sizes. The reason _
) . . ; 4 2—|y]
is that the density of states increases with the energy and the . >
eigenfunctions become too close to each other and thus can- P(y)={ m(2+¢7) 12+ |1
not be seperated. At lower energies, we find the following 0, || >2,

characteristic shapes.

The eigenfunction® ('®) and W ('®) of Figs. 4a) and 4b)  whereK (k) is the complete elliptic integral of the first kind.
are taken from the energy regime |, whegehas the peak P(y) has already been studied for thé3 rhombus billiard
value of 1,=0.942, very close to the Poisson value. Thewith g=2 [10] and for systems with a pointlike scatterer
functions look different. While the functio® ('?) in Fig. 4(a) [12].
looks very regular and extended, the functi&'® in Fig. In Fig. 5 we show the amplitude distributions of our
4(b) is a rather localizedand regular function, where non- eigenfunctions from Fig. 4 by the open circléhe filled
zero amplitudes exist basically close to the boundary, i.egircles will be explained in the next sectiphe limiting
inside the boundary teeth. Figuré&c#[regime Il in Fig. 4f)] cases of the Gaussian distribution for random functions and
represents rather the case of a chaotic function, i.e., the anof Eq. (6) for regular functions are indicated by a dotted and
plitude looks very random. Accordingly, we fiig=0.688 a solid line, respectively. For the regular looking functions

K 0<|y|=2,

(6)
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FIG. 4. (a)—(e) Typical eigenfunctions from different energy windows for the geom8ty The amplitudes are indicated by different
gray levels. The white regions stand for positive amplitudes, the black ones for negative amplitudes. The neutral gray tone stands for nearly
zero amplitude. The black contour line shows the border and does not correspond to any ampliti@lethdrargest amplitudes lie at the
border and are hidden by the contour line(fin | is plotted vs the dimensionless eneiggand the regions from where the functidias—(e)
are taken are indicated by circles. The functiéaisand (b) (¥'{® and ¥ () are both taken from the region .

(3 and ¥ (") [cf. Figs. 5a) and d)] we find very good shows a distribution that lies between the curves of the
agreement with Eq(6). The amplitude distribution in Fig. Gaussian and the localized functidics$. Fig. 5e)].

5(b) for the function¥(®) on the other hand consists of one (i) A second quantity to characterize the eigenfunctions is
large peak aiy~0. This function is localized and only in a the localization volume/fg’c) (participation ratio [29],

very small region of the billiard is the amplitude large. The

function ¥ in Fig. 5c) represents a function with a

Gaussian distribution of the amplitufief. Eq.(5)]. This is in V() =
line with our estimation that the function looks chaotic. The loc
last case of the eigenfunctioki('V) that looks intermediate

\% 1

a

A '
Af | ¥ (@) 4dxdy

)

016203-6



LEVEL STATISTICS AND EIGENFUNCTIONS @ . .. PHYSICAL REVIEW E 68, 016203 (2003

P(4)

(b)

4

[eci
0.2

0.0

FIG. 5. The dimensionless amplitude distribution @f the
single eigenfunctions presented in Fig(apen circleg and (ii) the
averaged amplitude distribution over many eigenfunctions in the
corresponding energy intervals as explained in SeduW circles). (111) 70
For single eigenfunction@)—(e) correspond toP (13), Y (10) (1) |Crim”’ |
v and¥ V), respectively. The dotted line indicates the Gauss- 05
ian distribution and the solid one the distribution of regular sine or 0.0
cosine functiongEq. (6)]. Functions(a) and (d) are regular(b) is
localized,(c) is Gaussiarichaotig, and(e) is intermediate between
chaotic and localized.

where ¥ is normalized according tg|W(x,y)|?dxdy=1
andV,=(f|¥@|*dxdy) . For some specific examples of
¥(x,y), we find

1 for constant functions,

4/9 for regular sine or cosine functions,

1/3  for Gaussian functions,

1/A  for & functions.

For the functions of Figs. (&-4(e), we find V(i)

loc

~0.429, V(Ib)~0.025, V(“)~0.332, V("')%0.441, and FIG. 6. Structure of the energy surface of _the eigenfunctians
viVi~0 068CV('5‘) as well I;cs\/('”) is ver IO(?Iose to the value T, () ¥, () ¥, and(d) ¥ from Fig. 4. We show the
loc 2 Vloc loc Y absolute values of the amplitudg8{*| on then,m lattice, where

of 4/9 of a regular cosine function, wheretf,) is VeIY 4 stands for the individual functions labeled Ia, II, Iil, and IV.
small and corresponds to a localized state. The localization
volume V{!!) is very close to 1/3 for Gaussian functions, , @ _ _ .
which confirms that the function is chaotic. For the last func-_ 1he amplitudesCy7y| of our elgenfulgctlons are shown in
tion, VI¥) is again small, which means that this function alsoFig. 6. Except for the localized state'), where the func-
is rather localized, even if it&, is slightly larger than 1ions ®, n(x,y) do not form a good basis, the values of
V(%) In all cases, the values af®) match very well the |Cliwl appear as peaks that are situated very close to the line
amplitude distributiond () of Fig. 5. of constant energyE,~ (n?/L;+m?/L7). This means that
(iii ) As a third measure for the eigenfunctions, we inves-those eigenstate®, ,(x,y) of the rectangular system that
tigate the energy surface. In order to do so, we expand theliave energye, , close toE,, interfere and form the eigen-
amplitudesC{®),=(¥(@|d, ) in the basisi,m of a rectan- ~ states¥(®) of the rough system. However, the number of
gular billiard, which has the same linear extensibpd., as participating states is very different. The regular states are
our rough billiard. Hereg enumerates the eigenstates of therepresented im,m space by one large peaéne coefficient
rough billiard, while®, ., are the eigenfunctions of the rect- Cﬁ,‘j) has an absolute value close t While the contribution
angular system. A similar analysis for chaotic billiards hasof the others is vanishing. This is the case for the functions

been performed in Ref$17,30. ¥ (3 and (") whosen,m space can be seen in Fig$ap
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T A S P(Vioe) ey Ply)
p(Viee) (a) (b) 30 (@) 06 |
20 ¢ i 3 20 04}
10 b [ 3 10 0.2t
H]'hn_m_n J!Iﬂm’ M 0 y ’Y y Y
0 Hkka } preef I HA] : : s f 0 01 02 03 04 05
30 F ¥ 3 Vi
2(Vioo) () (d) toe
20 £ 3 E FIG. 8. (a) The normalized histogram of th¥,,. values is
shown for the 152 eigenstates of the syst®mfrom the energy
10 i 3 interval [ 0.225, 0.240](b) The averaged amplitude distribution of
ﬁmﬂh]% the same eigenfunctions as (@ is indicated by full circles. The
0 ' - : AMoflie distributions for a regular sine or cosine function as well as for the
0 01 02 03 04 0 01 02 03 04 05

Gaussian distribution are indicated by a solid and a dotted line,
WVioc Vioe respecitvely.

FIG. 7. The normalized histograms of thg, values are shown
for energy regimesa) 1, (b) 11, (c) Ill, and (d) IV. For the calcula- Fig. 7(@)], we find two peaks: one peak is close ¥,
tions we used 341 states {a), 131 states ir(b), 139 states irc), =0.44, which corresponds to eigenstates of a rectangular
and 144 states ifd). billiard, and one peak is a¥|,.<0.1, indicating localized

states. In the second energy regifeee Fig. )], we find a

and €c), respectively.|C§1'v'n)1| of the chaotic statel") is  narrow distribution ofV,,, around the value of 0.33 of cha-
shown in Fig. @b). otic functions, in good agreement with the relatively low

Here, we find many peaks of roughly equal heights alongralue of 1,=0.688 in this regime. In the third reginisee
the energy surface, which shows that this state is a superp&ig. 7(c)], the values ofV,,. are distributed in the interval
sition of many different statesP, (x,y) that contribute [0.35, 0.4 with two peaks around 0.37 and 0.44. That in-
roughly with equal weight and is therefore spread over thalicates basically regular states with a slight trend toward
whole energy surface in,m space. A more complicated in- random behavior, which is in line with the value of
termediate situation can be found in Figdp(corresponding =0.893 in this regime. In the fourth energy regipsee Fig.
to the amplitude oft '\)). Here, we find a dense distribution 7(d)], most of theV,,. values are roughly distributed in the
of peaks on the energy surfaas for the chaotic statebut interval[0.1,0.4, which means again that the states are quite
also several secondary broader peaks that do not lie close localized. Nevertheless, the valuelgf=0.667 in this regime
the curve ofE,,~ (n%/L¢+m?/L%) and seem to be due to the is rather close tog'9" for chaotic functions. This contradic-
high amplitudes localized in the “teeth,” which cannot be tion accounts for the states intermediate between localized
described in the basis of the rectangular billiard. This state iand chaotic.
obviously intermediate between localized and chaotic. Ac- Next, we look at the average amplitude distributions in
cordingly, then,m space also matches very well the preced-our four regimes, which are shown in Figgak-5(e) by the

ing measures of the eigenfunctions and the valudg,.of full circles. Since in regime | two types of eigenfunction
exist, we split them into two groups according to thejs.
V. DISTRIBUTION OF EIGENEUNCTIONS values. The average amplitude distribution for 263 states

with V,,c>0.2 is presented in Fig.(&8 and the one for 78

We saw in the last section that for five selected functionsunctions withV,,.<0.2 in Fig. §b). The distributions in the
all measures of the eigenfunctions match very well kthe regimes II-IV are shown in Figs.(§—5(e) by full circles.
results found from level statistics. In intervals where theThe distributions are very close to those for the individual
level statistics is closer to Poisson-like behaviby ¢lose to  functions(open circles from the preceding section, showing
1), we found eigenfunctions that are either regular or localthat the features that we found for the single functions are
ized. In intervals where the level statistics is close to Wignercharacteristic for the whole energy regime. The eigenfunc-
like behavior ((y=0.637), on the other hand, the eigenfunc-tions of regime | are either localized or regular, the eigen-
tions seem to be chaotic with a Gaussian distribution of théunctions of regime 1l chaotic, the eigenfunctions of regime
amplitudes and spread over the whole energy surfacemn |ll again close to regular functions, and in regime IV there
space. Now, we look at the distribution of the eigenfunctionsare a lot of intermediate functions between localized and
inside a given energy interval. For this purpose, we calcuchaotic. It is remarkable that even the intermediate functions
lated more than 100 eigenstates for each of the four energyover a whole energy window; this explains the discrepancy
regimes of Fig. &) (341 eigenfunctions in regime |, 131 between the rather small values\éf,. and the value of,
states in regime II, 139 states in regime lll, and 144 states imvhich is close to the Wigner limit.
regime IV). In each case, we calculat&,. and the ampli- With these measures in mind, we can finally look at the
tude distributionP () over all eigenfunctions. systems with a random distribution of teeth widths, where

In Fig. 7, we show the normalized histograms of thg.  approached the Wigner limit very fast. In Fig. 8, we sh@v
values for the four energy regimes. In the first regimee the histogram of the/|,. values and in(b) the amplitude

016203-8



LEVEL STATISTICS AND EIGENFUNCTIONS @ . .. PHYSICAL REVIEW E 68, 016203 (2003

distribution of 152 eigenfunctions of systd®j in the energy  distribution p(s) at higher energies are—apart from
interval [0.225,0.240. The values of the localization vol- fluctuations—energy independent and close to a Wigner-like
umes show a narrow distribution around the valueVgf  behavior for largeg>20. The spectral rigidityA; also
=0.33 of Gaussian functions and the amplitude distributiorchanges from Poisson-like toward Wigner-like behavior
P(#) coincides with a Gaussian function. So these functionsvhen g increases. Howeverh; changes more slowly and
are quite obviously a random superposition of plane wavesstill shows deviations from the Wigner behavior even for
largeg.
VI. CONCLUSIONS For the case of periodic and narrow boundary teeth, we
) ] o find many energy regimes where the level statistics is close
In summary, we investigated the level statistics and thgp pojsson behavior. We find that those functions are either
eigenfunctions of pseudointegrable rough billiards with highjgcalized with very small values o¥,,. or regular cosine
genus numberg. They had a rectangular body and a roughfynctions withV,,. close to 0.44. An interesting regime also
boundary with small “teeth” of different widths, distances, gccurs where the eigenfunctions show intermediate behavior
and heights. The level statistics was found to be intermediatgith chaotic traces in the main body of the system but very
between Poisson- and Wigner-like behavior and approachegigh amplitudes inside the teeth, indicating weak localiza-
the latter with increasing. In particular, for small level dis-  tjgn.
tances, theA; curves can come very close to the Wigner  accordingly, deviations from a Wigner-like behavior of
statistics. This behavior is similar to that of systems withihe evel statistics are due to three different effeitsa poor
pointlike scatterers with an increasing number of scatterergasolution of the boundary roughness at very small energies,
[12,14. (i) regular wave functions because of periodic boundary
Additionally, we found different energy intervals with roughness, andiii) localization. However, for random
characteristic types of eigenfunctions, which correspond t®oundary roughness and not too small energies, those effects
special behaviors of the level statistics. In order to classifygre not pronounced and the eigenfunctions can mostly be
the eigenfunctions we employed several measures: the locahegcribed by a random superposition of plane waves, which
ization volumeVi,., the amplitude distributiorP(#), and s remarkable for pseudointegrable systems.
the behavior of the eigenfunctions imm space. For further research it would be interesting to investigate
We found that all systems have a low-energy regimene ejgenfunctions in the high-energy regime, which might
where the wavelengths of the eigenfunctions are too large tRelp to understand th&, data for large values af. As A,
resolve the boundary teeth and thus are affected by only thgyeasures the long-range correlations between eigenvalues, it

the low-energy regime have the characteristics of regulafocalized eigenfunctions in an energy interval of otherwise
functions with level statistics close to the Poisson distribu-chaotic functions can lead to these deviations.

tion. However, for systems with a random distribution of the
boundary teeth or for very broad teeth, this regime stays very
small and the high-energy regime is quickly reached.

For higher energies, the eigenfunctions of systems with We gratefully acknowledge financial support from the
either random boundary roughness or not too small teeth afBeutsche Forschungsgemeinschaft. We would like to thank
characterized by a close-to-Gaussian amplitude distributiodan Kantelhardt for making us familiar with the Lanczos al-
P(#) with a localization volume o¥,,;~0.33. They can be gorithm and the calculation of the second half moments and
constructed by a random superposition of many regular funcArmin Bunde for a careful reading of the manuscript and
tions. The second half momentg of the energy spacing interesting remarks.
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