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Level statistics and eigenfunctions of pseudointegrable systems:
Dependence on energy and genus number

Yuriy Hlushchuk and Stefanie Russ
Institut für Theoretische Physik III, Universita¨t Giessen, D-35392 Giessen, Germany

~Received 4 December 2002; published 11 July 2003!

We study the level statistics~second half momentI 0 and rigidity D3) and the eigenfunctions of pseudoin-
tegrable systems with rough boundaries of different genus numbersg. We find that the levels form energy
intervals with a characteristic behavior of the level statistics and the eigenfunctions in each interval. At low
enough energies, the boundary roughness is not resolved and accordingly the eigenfunctions are quite regular
functions and the level statistics shows Poisson-like behavior. At higher energies, the level statistics of most
systems moves from Poisson-like toward Wigner-like behavior with increasingg. On investigating the wave
functions, we find many chaotic functions that can be described as a random superposition of regular wave
functions. The amplitude distributionP(c) of these chaotic functions was found to be Gaussian with the
typical value of the localization volumeVloc'0.33. For systems with periodic boundaries we find several
additional energy regimes, whereI 0 is relatively close to the Poisson limit. In these regimes, the eigenfunctions
are either regular or localized functions, whereP(c) is close to the distribution of a sine or cosine function in
the first case and strongly peaked in the second case. An interesting intermediate case between chaotic and
localized eigenfunctions also appears.

DOI: 10.1103/PhysRevE.68.016203 PACS number~s!: 05.45.2a
ac
a

p
o
ic
ib

d

ro

t
r
lo

,

n
. I
m

is
a

t t
ys
a
ac
c

sys-
onal

do-
ace

the
ore
x-
nly

ed

e
of

ing
c-

f
isson
-
us
step
the

ng
ap-
t in
ies,
o it

t an
I. INTRODUCTION

Quantum billiards are quite simple models for many pr
tical applications in solid state and nuclear physics, such
e.g., quantum dots, microdisk lasers, and electron trans
in microstructures. An important means for the study
quantum billiards is the statistics of the quantum mechan
energy levels of a given system, where the distance distr
tion p(s) of the normalized distancessa5(Ea112Ea)/^s&
between two consecutive energy levelsEa11 and Ea with
the mean distancê s& has the following two limiting
cases: ~i! the Poisson distribution, pP(s)5exp@2s#,
which is the distance distribution of uncorrelate
numbers Ea , and ~ii ! the Wigner distribution pW(s)
5ps/(2^s&2)exp@2ps2/(4^s&2)#. An example of case~i! is
the energy levels of a single symmetry group of an elect
in a two-dimensional~2D! potential well in the shape of a
square, rectangle, or circle~integrable systems!. As a second
example, localized states in disordered systems tend to
Poisson distribution with increasing system size, a prope
often used in solid state physics to distinguish between
calized and extended states in disordered systems@1#. An
example of case~ii ! is the energy levels of chaotic billiards
such as, e.g., the stadium or the Sinai billiard.

In close analogy is the behavior of a classical particle i
billiard, which undergoes elastic reflections at the walls
also has two limiting cases, depending on the billiard geo
etry. If the billiard is chaotic, the motion of the particle
ergodically extended over the whole energy surface in ph
space. Two particles whose trajectories are very close a
beginning diverge exponentially from each other. If the s
tem is integrable, on the other hand, the motion of the p
ticle is restricted to a two-dimensional torus in phase sp
and neighboring trajectories diverge only linearly from ea
other.
1063-651X/2003/68~1!/016203~10!/$20.00 68 0162
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There are, however, several classes of intermediate
tems between the two limiting cases, such as, e.g., polyg
pseudointegrable systems@2–4#, on which we focus in this
paper, or systems with a pointlike scatterer@5#. As in inte-
grable systems, the motion of a classical particle in a pseu
integrable system is restricted to a two-dimensional surf
in phase space. However, these surfaces do not have
shapes of tori but are more complicated objects with m
than one hole. They are called ‘‘multihandled spheres.’’ E
amples of pseudointegrable systems are polygons with o
rational anglesnip/mi , with ni ,miPN and at least oneni
.1. They are described by their genus number

g511
M

2 (
i 51

J
ni21

mi
, ~1!

which is equal to the number of holes in the multihandl
sphere in phase space. Here,J is the number of angles andM
is the least common multiple ofmi . The reason that thos
systems are not completely integrable is their property
beam splitting. At some points in their geometry, neighbor
trajectories of particles can be split into two opposite dire
tions ~see Fig. 1!.

Several authors@6–11# found distance distributions o
pseudointegrable systems intermediate between the Po
and Wigner distributions. Reference@6# presented a numeri
cal investigation of pseudointegrable billiards of small gen
numbers, where the boundary was approached by a
function, which was arranged along the curved shape of
~chaotic! Sinai billiard. With decreasing size and increasi
number of steps, the level statistics of this system
proached the Wigner statistics. However, as pointed ou
this work, the analysis was performed at very small energ
where the wavelengths were larger than the step sizes. S
was assumed that the Wigner-like level statistics was no
©2003 The American Physical Society03-1
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inherent feature of the pseudointegrable shapes, but c
from the underlying assymptotic shape of the Sinai billia
Pseudointegrable systems of small genus numbersg52 and
3 were investigated numerically@7,8# and experimentally
@8#, showing an intermediate level statistics that clearly
viated from the Wigner distribution. In@9#, numerical simu-
lations on systems with increasing genus numbers up tg
'1000 indicated that, for not too small energies, the dista
distribution changes systematically from Poisson-like tow
Wigner-like behavior with increasingg. For pointlike scatter-
ers also, it was shown by general arguments and nume
calculations that the level statistics is intermediate and c
to Wigner-like behavior for small level distances@5,12–14#.
The Wigner-like behavior increases with the number and
coupling strength of the pointlike scatterers in the syst
@12,14#.

The level statistics seems to be connected to the pro
ties of the eigenfunctions. For example, in a billiard withg
52 it was found that there are regular and irregular eig
functions coexisting@10#. In the Husimi representation, th
eigenfunctions of systems with smallg show signatures o
pseudointegrability, whereas those of systems with largg
tend to be irregular@11#.

In this paper, we want to investigate the energy dep
dence of the level statistics of a special class of pseudoi
grable systems with high genus numbers. At low energie
is known that one can observe a level statistics that devi
from the high-energy limit, as shown in Ref.@6# for pseudo-
integrable and in Refs.@7,15–17# for chaotic billiards. Here
we find that for our systems there can be many energy w
dows where the level statistics is comparatively close
Poisson statistics, and other energy intervals where the
havior is close to Wigner statistics. We show that this beh
ior is correlated with the properties of the eigenfunctions a
that there exist several characteristic types of such interv

FIG. 1. Sketch of the considered pseudointegrable geom
The parametera is the width of the ‘‘teeth,’’h is their height,bx and
by are the distances between them in thex andy directions, andNx

andNy are the numbers of teeth in thex andy directions. The genus
numberg of this geometry isg511Gi , whereGi is the number of
salient corners with angles of 3p/2. The beam splitting property o
these corners is shown by the two arrows, which indicate two
ferent trajectories of classical particles.
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even at energy values where the boundary roughness i
solved.

The paper is organized as follows. In Sec. II, we introdu
the special pseudointegrable geometries that we conside
Sec. III, we show the results for the level statistics of t
eigenvalues for several systems of different values ofg. In
Sec. IV, we investigate the eigenfunctionsC (a) in these en-
ergy intervals and introduce several quantitative measu
i.e., the localization volumeVloc

(a) , the amplitude distribution
P(c (a)), and the behavior of the eigenfunctions inn,m
space. The functionsc andC differ in their normalization,
c5AAC, with the areaA of the system. Finally, in Sec. V
we apply these measures to many eigenfunctions in the
ferent energy intervals. We find that in intervals where t
energy levels have Poisson-like behavior the eigenfuncti
are either localized or regular. Energy intervals with lev
statistics close to Wigner-like behavior, on the other ha
contain eigenfunctions that are random superpositions
plane waves. An interesting mixed case also appears, w
the superposition of plane waves leads to weak localizat

II. SYSTEMS AND CALCULATIONS

We consider a membrane of the sound velocityc that lies
in the xy plane and vibrates in thez direction. When the
restoring forces are considered as scalar, the vibration
this membrane are described by the Helmholtz equation

DC (a)~x,y!52
va

2

c2
C (a)~x,y!, ~2!

with theath eigenfunctionC (a)(x,y) and the corresponding
eigenvalueva

2 . The boundary conditions can be of Dirichle
or Neumann type, referring to a membrane that is kept fix
at the boundary or that can vibrate freely, respectively. Eq
tion ~2! has the same form as the stationary Schro¨dinger
equation with zero potentialV50 inside the system. There
fore, under Dirichlet boundary conditions, which refer to
infinite potential on the boundary, it also describes an el
tron of massm in an infinite potential well. In this case, on
has to replaceva

2/c2 by 2mEa /\2, with the energy eigen-
valueEa .

For the numerical calculations, Eq.~2! is discretized on a
square lattice, which reduces the problem to the diagonal
tion of a symmetric matrix, which is carried out here by t
Lanczos algorithm@18#, a numerical procedure to compu
eigenvalues and eigenvectors of sparseN3N matrices by
reducing them iteratively to a tridiagonal form, for whic
effective algorithms exist. The eigenvaluesEa are calculated
numerically under Dirichlet and Neumann boundary con
tions and their spectra are analyzed by means of level st
tics. The Ea are dimensionless quantities, as we s
\2/(2m)51 andd51, whered is the lattice constant of the
discrete lattice.

As a model for our studies we chose rational billiards
the shape presented in Fig. 1 with different parameters re
ring to different numbers, widths, distances, and heights
the ‘‘teeth.’’ The genus numbers of these geometries can
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ily be increased by increasing the number of teeth. Two
ferent angles occur,w5p/2 andw53p/2. Applying Eq.~1!,
we find thatg511Gi , whereGi is the number of angles o
valuesw53p/2. The systems have no symmetry axes an
is therefore not necessary to separate the calculated eige
ues according to their symmetry groups~which would be
technically difficult!. The considered parameters range fro
systems with only a few teeth and therefore very small ge
numbers up to systems ofg5101.

III. LEVEL STATISTICS

We now analyze the eigenvalues by means of the le
statistics. The energy levelsEa are normalized~‘‘unfolded’’ !
to new values«a , such that their mean distance^s& is equal
to 1. Then we calculate the following two quantities.

~i! From the nearest neighbor spacing distributionp(s), it
has become common to calculate the second half mome

I 05
1

2
^s2&5

1

2E0

`

s2p~s!ds, ~3!

which lie between the two limiting valuesI 0
Wigner'0.637 and

I 0
Poisson51 ~see Refs.@19,20#!. This enables us to decide

the statistics is closer to Wigner or closer to Poisson by co
paring just one numberI 0 and is more comfortable in han
dling thanp(s) itself.

~ii ! Another measure, which turns out to be even m
sensitive tog, is the spectral rigidityD3(L), whereL is the
length of the energy interval considered@21#. D3(L) starts
from the integrated density of statesN(«)[N(«a)
5(n51

N Q(«a2«n) of the unfolded energy levels«a , which
is a staircase and can be approached by a straight lin
slope 1.D3(L) is defined as the least squares deviation

D3~L !5K Minr 1 ,r 2
E

«2L/2

«1L/2

@N~«!2r 12r 2«#2d«L , ~4!

where Minr 1 ,r 2
means that the parametersr 1 andr 2 are cho-

sen such that the liner 11r 2« is the best fit ofN(«). For the
calculation ofD3(L) we use the technique derived in Re
@22#. The limiting values areD3(L)5L/15 for integrable
systems andD3(L)5 ln(L)/p220.07/p21O(L21) for the en-
semble of Gaussian orthogonal matrices@23#, which serves
as a generally accepted good limit for chaotic systems. T
means that in the first caseD3(L) increases linearly withL,
and in the second case logarithmically. As discussed ab
we expect intermediate behavior for pseudointegrable
liards.

In this paper, we will basically useI 0 as the easier of the
two measures. However, we first want to compare the beh
ior of I 0 andD3 for several systems, ranging from very sm
values ofg53 until g549 at higher energies. The param
eters of these systems are shown in Table I. All systems h
roughly the same area and exactly the same widths
heights of the teeth,a5h58d, whered is the lattice con-
stant.
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In Figs. 2~a! and 2~c! we plotted the values ofI 0 for
Dirichlet and Neumann boundary conditions versus the
ergy. In Figs. 2~b! and 2~d! we show theD3(L) data for the
fixed energy intervalsE(5v2/c2)P@1.5,2.0# versusL. The
energy interval is chosen such that the wavelengthl
52pc/v is smaller than the widths of the teeth and the
fore the boundary roughness is resolved. The behavior oI 0
shows many fluctuations but its average value decreases
tematically with growingg toward the Wigner limit, which is
shown as a solid line. Comparing Figs. 2~a! and 2~c!, we also
see that the behavior for both boundary conditions is qu
similar. The only exception occurs at very small energi
whereI 0 lies considerably higher in the Dirichlet case. Th
reason for this is that the conditionc50 exactly at the
boundary prevents the long-wavelength eigenfunctions fr
penetrating into the small boundary teeth. The same ‘‘scre

TABLE I. Table of the geometries used in Fig. 2. The para
etersa, h, bx , andby refer to the ones given in Fig. 1. The value
of the parameters are given in units of the lattice constantd.

Geometry a h bx by Nx Ny g

A1 8 8 1 0 3
A2 8 8 368 150 1 2 5
A3 8 8 117 150 3 2 9
A4 8 8 55 71 6 4 19
A5 8 8 39 37 8 7 29
A6 8 8 26 27 11 9 39
A7 8 8 21 18 13 12 49

FIG. 2. ~a! and ~c! The second half momentsI 0 are plotted
versus the dimensionless energyE for several systems.~b! and ~d!
D3(L) from the fixed energy intervalEP@1.5,2.0# is plotted vsL
for the same systems as in~a! and~c!. ~a! and~b! refer to Dirichlet
and~c! and~d! to Neumann boundary conditions. The symbols re
to the systems of Table I with increasing genus numberg53 ~full
cicles!, g55 ~open circles!, g59 ~full squares!, g519 ~3!, g
529 ~open squares!, g539 (1), andg549 ~full diamonds!. In ~a!
and ~c! the systems ofg519 and 39 are omitted for a better vis
ibility. I 0 , D3, andL are dimensionless. In all figures, the Poiss
limit is indicated by a dotted and the Wigner limit by a solid line
3-3
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ing’’ of the boundary roughness at small energies has alre
been observed for fractal drums@24#. For D3 of pseudointe-
grable systems it was shown in@25# by a semiclassical peri
odic orbit theory that it depends on several details, e.g.,
the energy interval and on the area of the system. Howe
by keeping the billiard area, the energy interval, and
height and width of the teeth fixed, we find also forD3 a
smooth and systematic behavior that depends ong.

The behavior ofD3(L) @see Figs. 2~a! and 2~c!# corre-
sponds to that ofI 0. Those systems with small genus num
bers g show high values ofI 0 and accordingly values o
D3(L) which are close toL/15 ~dotted line!. Systems with
high genus numbersg, on the other hand, showI 0 values
close to I 0

Wigner and accordinglyD3 curves which are also
closer to the Wigner limit~solid line!. As in the case of
pointlike scatterers they come very close to the Wigner d
tribution for smallL. D3(L) turns out to be a more sensitiv
measure thanI 0 in the case of largeg values. While the
values ofI 0 for systems with genus numbersg.20 lie al-
ready so close to the Wigner limit that a succession betw
them can hardly be recognized, we still observe clear dif
ences between the individual curves ofD3 in the case of
larger level distances. However, theD3 data also indicate a
systematic change from Poisson-like toward Wigner-like
havior with increasingg.

In the following, we concentrate onI 0. We calculateI 0
for several selected systems with different heights, wid
and numbers of teeth in the energy range ofEP@0,3#, which
corresponds to roughly 40 000 energy levels. The calc
tions were made in intervals of energyDE50.05, each of
them containing about 600–800 levels. Here, we app
Neumann boundary conditions in all cases. The behavio
I 0 under Dirichlet boundary conditions is qualitatively sim
lar.

First, we discuss the case of random values of the par
etersa, bx , by , andh ~Table II!. For the first systemR1 the
values were uniformly distributed between 4d and 15d; for
the second systemR2 between 4d and 10d. The areas of the
systems are again kept roughly constant. In Fig. 3~a!, I 0 is
plotted versus the energyE for the systemsR1 andR2. For
most energy values, we find a roughly constant value oI 0
that lies close to the Wigner value. Only for very low ener
valuesEP@0,0.2# ~which corresponds to roughly 2100 lev
els! doesI 0 show deviations from the high-energy behav
toward higher values. This is due to the finite resolution
the boundary roughness in the limit of long wavelengt
where the systems look more regular. So, for a random st
ture of the boundary roughness, the high-energy limit
reached quickly and no deviations of theI 0 values from the

TABLE II. Series of the geometries used in Fig. 3. The para
etersa, bx , by , andh have random values from the indicated i
tervals. The values of the parameters are given in units of the la
constantd.

Geometry a, bx , by , h Nx Ny g

R1 @4,15# 22 17 77
R2 @4,10# 29 22 101
01620
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Wigner limit are seen beyond the first 2000 states.
In Figs. 3~b! and 3~c!, I 0 is plotted versusE for two types

of system with periodic boundary roughness, whose par
eters are presented in Table III. In the first group@Fig. 3~b!#,
all systems have the same widthsa5bx5by54d and num-
bersNx andNy of teeth~and correspondingly the same gen
number g587). The heights of the teeth are different,h
54d for systemB1 ~solid lines!, 8d for systemB2 ~dotted
lines!, and 16d for systemB3 ~dashed lines!. We first see that

-

ce

FIG. 3. The second half momentI 0 is plotted versus the dimen
sionless energyE for Neumann boundary conditions and for diffe
ent geometries~cf. Fig. 1!. The systems of~a! have random param
etersa, bx , by , andh with different widths of the distributions~see
Table II!. The solid line corresponds to the geometryR1, the dotted
line to geometryR2. ~b! shows the systemsB1 , B2, and B3 ~see
Table III!, which have constant values ofa5bx5by54 and an
increasing height:h54 ~solid line!, h58 ~dotted line!, h516
~dashed line!. ~c! shows the systemsB4 , B5, andB6 ~see Table III!
with parametersa5bx5by58 and the heighth54 ~solid line!, h
58 ~dotted line!, h516 ~dashed line!.

TABLE III. Series of the geometries used in Fig. 3. The para
etersa, h, bx , andby refer to the ones given in Fig. 1. In both serie
of the geometries, the width and distance between the teeth re
the same while the height is changing. The values of the parame
are given in units of the lattice constantd.

Geometry a5bx5by h Nx Ny g

B1 4 4 48 40 87
B2 4 8 48 40 87
B3 4 16 48 40 87
B4 8 4 24 20 43
B5 8 8 24 20 43
B6 8 16 24 20 43
3-4
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the narrow teeth account for a large low-energy regime w
Poisson-like behavior. Additionally, we observe sharp pe
of the I 0 values at several energies, which become m
pronounced with increasingh and are most probably due t
the periodic structures of the geometry. We will discuss th
peaks in the following sections. The second group@cf. Fig.
3~c!# consists of billiards with larger widthsa5bx5by58.
This group of billiards shows fewer and only small peaks
the I 0 values and the high-energy regime is reached q
quickly.

Therefore we found two types of system where the hi
energy limit is reached quickly: geometries with broad te
and geometries with a random distribution of teeth widths
systems with very narrow and regular teeth, on the ot
hand, energy windows appear where the behavior of the
tem deviates significantly from the described behavior in
high-energy regime. In these intervals, the values ofI 0 are
considerably larger than the expected high-energy val
These energy windows are most interesting and we loo
them in more detail now.

There are three different effects that may lead to hig
values ofI 0. First, at smaller energies~larger wavelengths!,
the teeth could not be sufficiently resolved and the states
affected by only the rectangular main body of the syste
This is the case for small energies, when half a waveleng
larger than the widtha and the eigenfunctions are not sma
enough to penetrate the teeth. Second, also at higher en
values, the periodic structure of the teeth could allow
very regular functions, even if the boundary roughness
fully resolved. In this case also, we expect a distribut
close to a Poisson distribution. Third, localized states
also be a reason for the spectrum to behave in a Poisson
way. Therefore, we expect thatI 0 is closely related to specia
system properties and should be reflected in the shape o
eigenfunctions. In order to understand this, we now inve
gate the eigenfunctions in the different energy windows.

IV. EIGENFUNCTIONS

Some typical eigenfunctions of the systemB3 under Neu-
mann boundary conditions are presented in Fig. 4. They
taken from the different energy regimes~labeled from I to
IV !, as indicated in Fig. 4~f!. Due to technical restrictions o
the Lanczos algorithm, we could not calculate eigenfuncti
of arbitrarily high energies in large system sizes. The rea
is that the density of states increases with the energy and
eigenfunctions become too close to each other and thus
not be seperated. At lower energies, we find the follow
characteristic shapes.

The eigenfunctionsC (Ia) andC (Ib) of Figs. 4~a! and 4~b!
are taken from the energy regime I, whereI 0 has the peak
value of I 050.942, very close to the Poisson value. T
functions look different. While the functionC (Ia) in Fig. 4~a!
looks very regular and extended, the functionC (Ib) in Fig.
4~b! is a rather localized~and regular! function, where non-
zero amplitudes exist basically close to the boundary,
inside the boundary teeth. Figure 4~c! @regime II in Fig. 4~f!#
represents rather the case of a chaotic function, i.e., the
plitude looks very random. Accordingly, we findI 050.688
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in this energy regime, closer to the Wigner value. The fu
tion C (III ) in Fig. 4~d! @regime III in Fig. 4~f!# again looks
regular andI 050.893 is again close to the Poisson valu
The difference of this function from the functionC (Ia) is the
smaller wavelength in regime III. Here, the boundary roug
ness is to some extent resolved and the reason for the re
wave function lies in the periodicity of the teeth. These reg
lar wave functions at higher energies should disappea
systems with random boundary roughness. Figure 4~e! @re-
gime IV in Fig. 4~f!# represents an interesting intermedia
case of a function that is chaotic as well as localized.I 0 in
this case is 0.667, rather close to the Wigner value. T
function C (IV) looks random in the inner rectangular part
the billiard, but its amplitudes in this part are very small. T
largest amplitudes of the function are localized on the b
ders of the teeth. So this case is in some sense interme
between a localized and a chaotic function. This seems to
a weak localization mechanism, where the wave is reflec
at the boundary roughness and interferes constructively
side the teeth.

Accordingly, we found four characteristic types of eige
function, regular ones, localized ones, chaotic ones, and
termediate ones between chaotic and localized. All eig
functions seem to correspond to energy windows, which
be characterized by their correspondingI 0 values. We now
introduce several measures for the eigenfunctions that a
us to distinguish between those cases.

~i! As a first characteristic for the eigenfunction analy
we used the distribution of the amplitudesP(c). By semi-
classical arguments it was conjectured that for classic
chaotic systems most eigenfunctions are a random supe
sition of plane waves, which leads to an amplitude distrib
tion that is a Gaussian function@26–28#,

P~c!5
1

A2p
e2c2/2, ~5!

where c5AAC is normalized according to
* uc(x,y)u2dxdy5A with A the area of the billiard. This nor
malization allows us to compare eigenfunctions of syste
with different sizes. The amplitude distribution of eigenfun
tions of a rectangular billiard, on the other hand, was sho
to be @12#

P~c!5H 4

p2~21c2!
KS 22ucu

21ucu D , 0,ucu<2,

0, ucu.2,

~6!

whereK(k) is the complete elliptic integral of the first kind
P(c) has already been studied for thep/3 rhombus billiard
with g52 @10# and for systems with a pointlike scatter
@12#.

In Fig. 5 we show the amplitude distributions of ou
eigenfunctions from Fig. 4 by the open circles.~The filled
circles will be explained in the next section.! The limiting
cases of the Gaussian distribution for random functions
of Eq. ~6! for regular functions are indicated by a dotted a
a solid line, respectively. For the regular looking functio
3-5
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FIG. 4. ~a!–~e! Typical eigenfunctions from different energy windows for the geometryB3. The amplitudes are indicated by differen
gray levels. The white regions stand for positive amplitudes, the black ones for negative amplitudes. The neutral gray tone stands
zero amplitude. The black contour line shows the border and does not correspond to any amplitudes. In~e!, the largest amplitudes lie at th
border and are hidden by the contour line. In~f!, I 0 is plotted vs the dimensionless energyE and the regions from where the functions~a!–~e!
are taken are indicated by circles. The functions~a! and ~b! (C (Ia) andC (Ib)) are both taken from the region I.
.
e

a
he
a

he

the

s is
C (Ia) andC (III ) @cf. Figs. 5~a! and 5~d!# we find very good
agreement with Eq.~6!. The amplitude distribution in Fig
5~b! for the functionC (Ib) on the other hand consists of on
large peak atc'0. This function is localized and only in
very small region of the billiard is the amplitude large. T
function C (II ) in Fig. 5~c! represents a function with
Gaussian distribution of the amplitude@cf. Eq.~5!#. This is in
line with our estimation that the function looks chaotic. T
last case of the eigenfunctionC (IV) that looks intermediate
01620
shows a distribution that lies between the curves of
Gaussian and the localized functions@cf. Fig. 5~e!#.

~ii ! A second quantity to characterize the eigenfunction
the localization volumeVloc

(a) ~participation ratio! @29#,

Vloc
(a)5

Va

A
[

1

AE uC (a)u4dxdy

, ~7!
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where C is normalized according to* uC(x,y)u2dxdy51
andVa5(* uC (a)u4dxdy)21. For some specific examples o
C(x,y), we find

Vloc55
1 for constant functions,

4/9 for regular sine or cosine functions,

1/3 for Gaussian functions,

1/A for d functions.

~8!

For the functions of Figs. 4~a!–4~e!, we find Vloc
(Ia)

'0.429, Vloc
(Ib)'0.025, Vloc

(II )'0.332, Vloc
(III )'0.441, and

Vloc
(IV)'0.060.Vloc

(Ia) as well asVloc
(III ) is very close to the value

of 4/9 of a regular cosine function, whereasVloc
(Ib) is very

small and corresponds to a localized state. The localiza
volume Vloc

(II ) is very close to 1/3 for Gaussian function
which confirms that the function is chaotic. For the last fun
tion, Vloc

(IV) is again small, which means that this function al
is rather localized, even if itsVloc is slightly larger than
Vloc

(Ib) . In all cases, the values ofVloc
(a) match very well the

amplitude distributionsP(c) of Fig. 5.
~iii ! As a third measure for the eigenfunctions, we inve

tigate the energy surface. In order to do so, we expand t
amplitudesCn,m

(a) 5^C (a)uFn,m& in the basisn,m of a rectan-
gular billiard, which has the same linear extensionsLx,Ly as
our rough billiard. Here,a enumerates the eigenstates of t
rough billiard, whileFn,m are the eigenfunctions of the rec
angular system. A similar analysis for chaotic billiards h
been performed in Refs.@17,30#.

FIG. 5. The dimensionless amplitude distribution of~i! the
single eigenfunctions presented in Fig. 4~open circles! and ~ii ! the
averaged amplitude distribution over many eigenfunctions in
corresponding energy intervals as explained in Sec. V~full circles!.
For single eigenfunctions~a!–~e! correspond toC (Ia), C (Ib), C (II ),
C (III ), andC (IV), respectively. The dotted line indicates the Gau
ian distribution and the solid one the distribution of regular sine
cosine functions@Eq. ~6!#. Functions~a! and ~d! are regular,~b! is
localized,~c! is Gaussian~chaotic!, and~e! is intermediate between
chaotic and localized.
01620
n

-

-
ir

s

The amplitudesuCn,m
(a) u of our eigenfunctions are shown i

Fig. 6. Except for the localized stateC (Ib), where the func-
tions Fn,m(x,y) do not form a good basis, the values
uCn,m

(a) u appear as peaks that are situated very close to the
of constant energyEa;(n2/Lx

21m2/Ly
2). This means that

those eigenstatesFn,m(x,y) of the rectangular system tha
have energyEn,m close toEa interfere and form the eigen
statesC (a) of the rough system. However, the number
participating states is very different. The regular states
represented inn,m space by one large peak~one coefficient
Cn,l

(a) has an absolute value close to 1!, while the contribution
of the others is vanishing. This is the case for the functio
C (Ia) andC (III ), whosen,m space can be seen in Figs. 6~a!

e

-
r

FIG. 6. Structure of the energy surface of the eigenfunctions~a!
C (Ia), ~b! C (II ), ~c! C (III ), and~d! C (IV) from Fig. 4. We show the
absolute values of the amplitudesuCn,m

(a) u on then,m lattice, where
a stands for the individual functions labeled Ia, II, III, and IV.
3-7
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and 6~c!, respectively.uCn,m
(II ) u of the chaotic stateC (II ) is

shown in Fig. 6~b!.
Here, we find many peaks of roughly equal heights alo

the energy surface, which shows that this state is a supe
sition of many different statesFn,m(x,y) that contribute
roughly with equal weight and is therefore spread over
whole energy surface inn,m space. A more complicated in
termediate situation can be found in Fig. 6~d! ~corresponding
to the amplitude ofC (IV)). Here, we find a dense distributio
of peaks on the energy surface~as for the chaotic state!, but
also several secondary broader peaks that do not lie clos
the curve ofEa;(n2/Lx

21m2/Ly
2) and seem to be due to th

high amplitudes localized in the ‘‘teeth,’’ which cannot b
described in the basis of the rectangular billiard. This stat
obviously intermediate between localized and chaotic. A
cordingly, then,m space also matches very well the prece
ing measures of the eigenfunctions and the values ofI 0.

V. DISTRIBUTION OF EIGENFUNCTIONS

We saw in the last section that for five selected functio
all measures of the eigenfunctions match very well theI 0
results found from level statistics. In intervals where t
level statistics is closer to Poisson-like behavior (I 0 close to
1), we found eigenfunctions that are either regular or loc
ized. In intervals where the level statistics is close to Wign
like behavior (I 0'0.637), on the other hand, the eigenfun
tions seem to be chaotic with a Gaussian distribution of
amplitudes and spread over the whole energy surface inn,m
space. Now, we look at the distribution of the eigenfunctio
inside a given energy interval. For this purpose, we cal
lated more than 100 eigenstates for each of the four en
regimes of Fig. 4~f! (341 eigenfunctions in regime I, 13
states in regime II, 139 states in regime III, and 144 state
regime IV!. In each case, we calculatedVloc and the ampli-
tude distributionP(c) over all eigenfunctions.

In Fig. 7, we show the normalized histograms of theVloc
values for the four energy regimes. In the first regime@see

FIG. 7. The normalized histograms of theVloc values are shown
for energy regimes~a! I, ~b! II, ~c! III, and ~d! IV. For the calcula-
tions we used 341 states in~a!, 131 states in~b!, 139 states in~c!,
and 144 states in~d!.
01620
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Fig. 7~a!#, we find two peaks: one peak is close toVloc
50.44, which corresponds to eigenstates of a rectang
billiard, and one peak is atVloc,0.1, indicating localized
states. In the second energy regime@see Fig. 7~b!#, we find a
narrow distribution ofVloc around the value of 0.33 of cha
otic functions, in good agreement with the relatively lo
value of I 050.688 in this regime. In the third regime@see
Fig. 7~c!#, the values ofVloc are distributed in the interva
@0.35, 0.46# with two peaks around 0.37 and 0.44. That i
dicates basically regular states with a slight trend tow
random behavior, which is in line with the value ofI 0
50.893 in this regime. In the fourth energy regime@see Fig.
7~d!#, most of theVloc values are roughly distributed in th
interval@0.1,0.2#, which means again that the states are qu
localized. Nevertheless, the value ofI 050.667 in this regime
is rather close toI 0

Wigner for chaotic functions. This contradic
tion accounts for the states intermediate between local
and chaotic.

Next, we look at the average amplitude distributions
our four regimes, which are shown in Figs. 5~a!–5~e! by the
full circles. Since in regime I two types of eigenfunctio
exist, we split them into two groups according to theirVloc
values. The average amplitude distribution for 263 sta
with Vloc.0.2 is presented in Fig. 5~a! and the one for 78
functions withVloc<0.2 in Fig. 5~b!. The distributions in the
regimes II–IV are shown in Figs. 5~c!–5~e! by full circles.
The distributions are very close to those for the individu
functions~open circles! from the preceding section, showin
that the features that we found for the single functions
characteristic for the whole energy regime. The eigenfu
tions of regime I are either localized or regular, the eige
functions of regime II chaotic, the eigenfunctions of regim
III again close to regular functions, and in regime IV the
are a lot of intermediate functions between localized a
chaotic. It is remarkable that even the intermediate functi
cover a whole energy window; this explains the discrepa
between the rather small values ofVloc and the value ofI 0,
which is close to the Wigner limit.

With these measures in mind, we can finally look at t
systems with a random distribution of teeth widths, whereI 0
approached the Wigner limit very fast. In Fig. 8, we show~a!
the histogram of theVloc values and in~b! the amplitude

FIG. 8. ~a! The normalized histogram of theVloc values is
shown for the 152 eigenstates of the systemR1 from the energy
interval @0.225, 0.240].~b! The averaged amplitude distribution o
the same eigenfunctions as in~a! is indicated by full circles. The
distributions for a regular sine or cosine function as well as for
Gaussian distribution are indicated by a solid and a dotted l
respecitvely.
3-8
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distribution of 152 eigenfunctions of systemR1 in the energy
interval @0.225,0.240#. The values of the localization vol
umes show a narrow distribution around the value ofVloc
50.33 of Gaussian functions and the amplitude distribut
P(c) coincides with a Gaussian function. So these functio
are quite obviously a random superposition of plane wav

VI. CONCLUSIONS

In summary, we investigated the level statistics and
eigenfunctions of pseudointegrable rough billiards with h
genus numbersg. They had a rectangular body and a rou
boundary with small ‘‘teeth’’ of different widths, distance
and heights. The level statistics was found to be intermed
between Poisson- and Wigner-like behavior and approac
the latter with increasingg. In particular, for small level dis-
tances, theD3 curves can come very close to the Wign
statistics. This behavior is similar to that of systems w
pointlike scatterers with an increasing number of scatte
@12,14#.

Additionally, we found different energy intervals wit
characteristic types of eigenfunctions, which correspond
special behaviors of the level statistics. In order to class
the eigenfunctions we employed several measures: the lo
ization volumeVloc , the amplitude distributionP(c), and
the behavior of the eigenfunctions inn,m space.

We found that all systems have a low-energy regi
where the wavelengths of the eigenfunctions are too larg
resolve the boundary teeth and thus are affected by only
main rectangular body of the billiard. The eigenfunctions
the low-energy regime have the characteristics of reg
functions with level statistics close to the Poisson distrib
tion. However, for systems with a random distribution of t
boundary teeth or for very broad teeth, this regime stays v
small and the high-energy regime is quickly reached.

For higher energies, the eigenfunctions of systems w
either random boundary roughness or not too small teeth
characterized by a close-to-Gaussian amplitude distribu
P(c) with a localization volume ofVloc'0.33. They can be
constructed by a random superposition of many regular fu
tions. The second half momentsI 0 of the energy spacing
01620
n
s
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e
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to
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distribution p(s) at higher energies are—apart fro
fluctuations—energy independent and close to a Wigner-
behavior for largeg.20. The spectral rigidityD3 also
changes from Poisson-like toward Wigner-like behav
when g increases. However,D3 changes more slowly and
still shows deviations from the Wigner behavior even f
largeg.

For the case of periodic and narrow boundary teeth,
find many energy regimes where the level statistics is cl
to Poisson behavior. We find that those functions are eit
localized with very small values ofVloc or regular cosine
functions withVloc close to 0.44. An interesting regime als
occurs where the eigenfunctions show intermediate beha
with chaotic traces in the main body of the system but v
high amplitudes inside the teeth, indicating weak localiz
tion.

Accordingly, deviations from a Wigner-like behavior o
the level statistics are due to three different effects:~i! a poor
resolution of the boundary roughness at very small energ
~ii ! regular wave functions because of periodic bound
roughness, and~iii ! localization. However, for random
boundary roughness and not too small energies, those ef
are not pronounced and the eigenfunctions can mostly
described by a random superposition of plane waves, wh
is remarkable for pseudointegrable systems.

For further research it would be interesting to investig
the eigenfunctions in the high-energy regime, which mig
help to understand theD3 data for large values ofg. As D3
measures the long-range correlations between eigenvalu
seems likely that even a very small amount of regular
localized eigenfunctions in an energy interval of otherw
chaotic functions can lead to these deviations.
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